酒店大战丝袜高跟鞋人妻,最近最新中文字幕大全免费版,国产jlzzjlzz视频免费看,高中男生自慰网站xnxx免费

新聞中心

污水處理原理及技術匯總

01
什么是生物污水處理法??


◆生物處理是利用微生物來吸咐、分解、氧化污水中的有機物,把不穩定的有機物降解為穩定無害的物質,從而使污水得到凈化。現代的生物處理法,按作用微生物的不同,可分好氧氧化和厭氧還原兩大類。前者廣泛用于處理城市污水和有機性工業廢水。好氧氧化應用較廣包含著很多藝種工藝和構筑物。


生物膜法(包含生物過濾池、生物轉盤)、生物接觸氧化等多種工藝和構筑物。活性污泥法和生物膜法都是人工生物處理方法。此外還有農田和池塘的天然生物處理法,即灌溉田和生物塘。生物處理成本低廉,因此是目前應用最廣泛的污水處理方法。


02
什么是廢水處理量或BOD5去除總量和處理質量??

◆污水處理量或BOD5去除總量:每日進入污水廠處理的總污水流量(以m3/d計),可作為污水廠處理能力的一個指標。每日去除BOD5的總量亦可作為污水廠處理能力的指標。去除BOD5總量等于處理流量與進出水BOD5差值的乘積,以kg/d或t/d為單位。


◆處理質量:二級污水處理廠以出廠的BOD5與SS值作為處理質量指標。按新制訂的污水處理廠出水排放標準,二級污水處理廠出水BOD5、SS均小于30mg/L。處理質量也可用去除率來衡量。進水濃度減出水濃度除以進水濃度即為去除率。氨氮、TP出水值或去除率也應用于處理質量指標。


03
什么是pH值及其指示意義??

◆pH表示污水的酸堿程度。它是水中氫離子濃度倒數的對數值,其范圍為0~14,pH值等于7,則水呈中性,小于7呈酸性,數值越小,其酸性越強,大于7呈堿性,數值越大,其堿性越強。污水中pH值大小對管道、水泵、閘閥和污水處理構筑物有一定的影響。以生活污水為主的污水處理廠的pH值,通常為7.2~7.8。過高或過低的pH值,均可表明有工業廢水的進入。過低的值會腐蝕管道、泵體并可能產生危害。例如污水中的硫化物會在酸性條件下,生成H2S氣體。高濃度時使操作工作頭痛、流涕、窒息甚至死亡。為此發現pH降低必須加強監測,尋找污染源,采取對策。同時,生化處理的pH允許范圍是6~10,過高或過低都可影響或破壞生物處理。


04
什么是總固體(TS)??


◆是指水樣在100℃溫度下,在水浴鍋上蒸發至干所余留的總固體數量。它是污水中溶解性固體和非溶解性固體的總和。它可反映出污水中固體的總濃度。通過進出水固體的分析可反映出污水處理構筑物對去除總固體的效果。


05
什么是懸浮固體(SS)?


◆是指污水中能被濾器截留的固體物質數量。懸浮固體一部分在一定條件下可以沉淀。測定懸浮固體通常是用石棉濾層過濾法進行。主要設備為古氏坩鍋。當化驗設備條件不具備時,也可采用濾紙作為濾器,從總固體與溶解固體的減差來求得懸浮固體量。測定懸浮固體時,由于濾器不同,常產生較大差異。


◆該項指標是污水最基本的數據之一。測定進水和出廠水的懸浮固體,可用來反映污水通過初沉池,二沉池處理后,懸浮固體減少的情況,它是反映構筑沉淀效率的主要依據。


06
什么是化學需氧量(COD)??


◆化學需氧量(簡稱COD)是指用化學方法氧化污水中有機物所需要的氧化劑的氧量。用高錳酸鉀作氧化劑,測得的結果習慣上叫做耗氧量,用OC表示。用重鉻酸鉀作氧化劑,測得的結果稱為化學需氧量以COD表示,二者的區別在于選用氧化劑的不同。以高錳酸鉀作為氧化劑,只能氧化污水中的直鏈有機化合物,而以重鉻酸鉀作為氧化劑,它的作用比前者強烈與完全,除直鏈有機化合物以外,它能氧化高錳酸鉀不能氧化的許多結構復雜的有機化合物。因此,同一污水COD值比OC值大得多。特別是當污水廠有大量工業廢水進入時,一般都應測得重絡酸鉀法的化學需氧量。城市污水廠的COD值一般約為400~800mg/L。


◆高錳酸鉀法的耗量值在污水廠中常被用來作為確定五日生化需氧量稀釋倍數的參考數據。



07
什么是生化需氧量(BOD)?


◆生化需氧量:(簡稱BOD)是指在有氧條件下,水中的微生物分解有機物時所需要的氧量。它是一種間接表示有機物污染程度的指標,有機物的生化氧化分解通常有二個階段,第一階段主要是含碳有機物的氧化,稱為碳化階段,約需20天才能完成。第二階段主要是含氮有機物的氧化、稱為硝化階段,約需100天才能完成。在公認的情況下,一般標準做法是在20℃溫度下,培養5天,進行測定,測得數據稱為五日生化需氧量。簡稱BOD5,因此BOD5表示部分含碳有機物分解的需氧量,生活污水的BOD5應約在70%左右。


◆五日生化需氧量的測定,是取原水樣或經過適當稀釋的水樣,使其含有足夠的溶解氧,以滿足五日生化需氧的要求,將此水樣分成二份,一份測得當天的溶解氧含量,而將另一份放入20℃培養箱內,培養5天后再測定其溶解含量,兩者之差乘上稀釋倍數即為BOD5。


◆BOD5測定過程中,正確選擇稀釋倍數至關重要。通常認為,選擇的稀釋倍數應使經過稀釋的水樣在20℃恒溫箱內培養5天后,它的溶解氧減少在20%~80%時較為適當。但是,有時常因BOD5的稀釋倍數掌握不當造成數值上的誤差,甚至稀釋倍數太小而得不到BOD5的數據。


08
測定BOD的用途??


◆BOD可反映污水被有機物污染的程度,污水中所含有機物越多,則消耗氧量亦越多,BOD數值也越高,反之亦然。因此它是污水水質指標中最為重要的一個。盡管測定BOD需時較長、數據不及時,但BOD指標帶有綜合性——綜合反映有機物總量,模擬性——模仿水體自凈。因此很難用其他指標來代替。


對于污水處理廠來說,該指標的用途為:

a.反映污水有機物濃度。如進廠污水有機物濃度,出廠污水有機物濃度。城市污水處理廠進水BOD5一般可達150~350mg/L。


b.用以表示污水處理廠的處理效果。進、出水BOD5的減差除以進水BOD5即為該廠的BOD5去除率,是重要的指標。


c.污水處理廠的去除總量與出水BOD5,表示了在污水廠總的處理能力與對水體環境的影響量。


d.用來計算處理構筑物的運轉參數,如曝氣池的污泥負荷BOD5kg(MISS)或容積負荷BOD5kg/(m3/d)。


e.反映污水處理廠運轉的技術經濟數據,如除去每kgBOD耗用電量(度),去除每kgBOD5需要的空氣量。


f.衡量污水可生化程度,當BOD5/COD大于0.3時,說明污水可以進行生化處理。小于0.3時,則難以生化處理。比值在0.5~0.6時,生化過程很容易進行。


◆由此可見,測定BOD5的用處很大,它是污水處理廠最重要的一個測定項目。但測定所需時間較長,不能及時出數據。COD的化驗反映污水中有機物被氧化劑氧化所需氧量,它的數據值接近于全部有機物的需氧量。因此它也有較大用處,而且COD測定時簡短,一般城市污水廠COD﹥BOD,如果污水中有機物種類變化較少,則COD與BOD有一定的相互關系,因此就可用當天的COD來預測BOD5值。


◆根據各城市污水處理廠的運轉數據,通常SS與BOD5在數值上大致相仿或者略為高些。如上海各污水廠的SS比BOD5在數值上平均高出50mg/L左右。


◆在進廠污水中如發現BOD5與SS成倍增長,則可能有高濃度的有機廢水流入或者糞便大量進廠。這樣將會增加處理負荷。使處理效率降低,甚至還會阻塞管道,必須追查原因,采取措施。



09
總氮、氨氮、亞硝酸鹽氮、硝酸鹽氮 (N、NH4+、NO2-N O-3)指示意義??


◆污水中有大量的含碳有機物與含氮有機物,前者以碳、氫、氧為基本元素。后者以氮、硫、磷為基本元素。含氮有機物在好氧分解過程中,最終會轉化為氨氮肥、亞硝酸鹽氮肥、硝酸鹽氮、水和二氧化碳等無機物。因此測定上述三個指標可反映污水分解過程與經處理后無機化的程度。當二級污水處理廠中只有少量亞硝酸氮出現時,該處理出水尚不能穩定,當氧量不足時,則污水中的有機氮大多數轉化為無機物,出水流入水體后是較為穩定的。一般進廠污水的氨氮值約30~70mg/L。進廠水中一般不含有亞硝酸鹽與硝酸鹽。二級污水處理廠一般不能大量除氮肥,處理程度較高時,能夠將部份氨氮轉化為硝酸鹽氮。


10
磷、氮(P、N)指標意義?


◆污水中磷和鉀的含量影響微生物的生長,活性污泥污處理污水要維持BOD5:N:P的比例在100:5:1以上,在城市污水廠,一般都能達到這個比例。有些工業廢水達不到這個比例,就必須向污水添加營養劑。


11
什么是溶解氧、測定目的是什么?


◆溶解氧是指溶解于水中的氧量,它與溫度、壓力、微生物的生化作用有密切關系。在一定溫度下,水中最多只能溶解一定量的氧,例如20℃時,蒸餾水的溶解氧飽和值為9.17 mg/L。


◆在污水處理中常常測定出水和曝氣池中的溶解值,根據它的大小來調節空氣供應量,了解曝氣池內的耗氧情況以判斷在各種水溫條件下,曝氣池耗氧速率。在運轉過程中,要求曝氣池內的溶解氧在1 mg/L以上,過低的溶解氧值表明曝氣池內缺氧,過高的溶解氧不但浪費能耗,且可能造成污泥松碎、老化。


◆污水處理廠出水中含有溶解氧對水體環境是有益的,在可能的條件下,應讓出水帶有些溶解氧。


◆溶解氧在水體自凈過程中是個重要參數,它可反映水體中耗氧與溶氧的平衡關系。


12
水溫對運行的關系??


◆水溫,水溫對曝氣池工作有著很大的關系。一個污水廠的水溫是隨季節逐漸緩慢變化的,一天內幾乎無甚變化。如果發現一天內變化很大,則要進行檢查,查否有工業冷卻進入。全年在8~30℃范圍內,曝氣池在水溫8℃以下運行時,處理效率有所下降,BOD5去除率常低于80%。


13
污泥負荷是什么?怎樣調節??


a.污泥負荷=進入曝氣池的BOD5數量(流量×濃度)/曝氣池中MLSS總量(MLSS×池積)。


b.由于初沉池出水中的BOD5數量決定于進廠水質,一般難以調節,調節污泥負荷,減少MLSS,則提高污泥負荷,增加或減少MLSS一般通過增加或減少排泥來實現。


◆污泥負荷對處理效果,污泥增長和需氧量影響很大,必須注意掌握。一般來說,污泥負荷在0.2~0.5kg(BOD5)/(kg.d,掌握在0.3kg(BOD5)/「kg(MLSS).d」左右。


14
曝氣池容積負荷??


◆曝氣池單位容積每天負擔的BOD5量稱為容積負荷kg(BOD5)/(m3.d)。容積負荷表示了建造該曝氣池的經濟性。容積負荷和混合液濃度及污泥負荷有如下關系:


BV=x.B5,式中(x即MLSS)。


15
污泥泥齡含義?


◆污泥泥齡=曝氣池內MLSS數量(MLSS×池積)/剩余污泥中固體量(排放量×排泥濃度)。


◆污泥泥齡是曝氣池中工作著的活性污泥總量與每天排放的剩余污泥之比值,單位是d。在運行平穩時,可理解為活性污泥在曝氣中平均停留時間。


◆一般曝氣池系統的污泥泥齡約5~6d。當要達到硝化階段時,污泥泥齡需達8~12d或更高。


◆污泥泥齡和污泥負荷有相反的關系,污泥泥齡長,負荷低,反之亦然,但并不成絕對的反比例函數關系。


16
混合液懸浮固體濃度(MLSS)??


◆混合液懸浮固體濃度是曝氣池中污水和活性污泥混合后的混合液懸浮固體數量,單位(mg/L),它是計量曝氣池中活性污泥數量的指標,由于測定簡便,往往以它作為粗略計量活性污泥微生物量的指標。在推動流曝氣中MLSS一般為1000~4000mg/L,在合建的完全混合曝氣池中,空氣曝氣的MLSS根少有超過8000mg/L。這是因為MLSS過高。妨礙充氧,也使它難以在二沉池中沉降。


17
混合液揮發性懸浮固體濃度(MLVSS)??


◆混合液揮發性懸浮固體濃度是指混合液懸浮固體中有機物的重量(通常用600℃下的燒灼減量來測定),故有人認為能較MLSS更確切地代表活性污泥微生物的數量。不過MLVSS中還包括非活性的不能降解的有機物、也不是計量MLSS的最理想指標,對于生活污水,常在0.75左右。


18
污泥指數(SVI)?


◆污泥指數指曝氣池混合液經30min靜沉后,相應的1g干污泥所占的容積(以ml計)即:

SVI=混合液30min靜沉后污泥沉積(ml)/污泥干重(g)

SVI值能較好地反映出活性污泥的松散程度和凝聚沉降性能。良好的活性污泥SVI常在50~300之間,SVI過高的污泥濃度,在相同濃度情況下測得的SVI值才有價值。另因測定容器的大小對測定的數量有一定的影響,必須統一測定容器。


一、污水處理級別及工藝



1.污水處理級別

污水處理級別有一級處理(包括一級強化處理)、二級處理(包括二級強化處理) 和深度處理。

2.污水處理工藝的組成

包括:物理處理工段、生化處理工段。

二、污水處理工藝選擇的原則



1.工藝選擇的主要技術經濟指標

①處理單位水量投資;

②削減單位污染投資;

③處理單位水量電耗和成本;

④削減單位污染物電耗和成本;

⑤占地面積;

⑥運行性能可靠性;

⑦管理維護難易程度;

⑧總體環境效益等。

2.城市污水處理工藝應根據處理規模、水質特征、受納水體的環境功能及當地的實際情況和要求,經全面技術經濟比較后優選確定。

3.應切合實際地確定污水進水水質,優化工藝設計參數,對污水的現狀水質特征,污染物構成必須進行詳細調查或測定,作出合理的分析預測,在水質構成復雜或特殊時,應進行污水處理工藝的動態試驗,必要時應開展中試研究。

4.積極審慎地采用新工藝,對在國內首次應用的新工藝, 必須經過中試和生產性試驗,提供可靠的設計參數后再進行應用。

5.同一個污水廠分期建設時,各階段應盡量采用同一種工藝,而且各階段的建設規模應盡量相同。

三、污水處理方法






現代污水處理方法主要分為物理處理法、化學處理法、物理化學處理法和生物處理法四類。

1.物理處理法

物理處理法是通過物理作用,以分離、回收污水中不溶解的、呈懸浮狀的污染物質(包括油膜和油珠),在處理過程中不改變其化學性質。常用的有過濾法、沉淀法、浮選法等。

(1)過濾法

利用過濾介質截流污水中的懸浮物。過濾介質有篩網、紗布、粒物,常用的過濾設備有格柵、篩網、微濾機等。

格柵與篩網。在排水工程中,廢水通過下水道流人水處理廠,首先應經過斜置在渠道內的一組金屬制的呈縱向平行的框條(格柵)、穿孔板或過濾網(篩網),使漂浮物或懸浮物不能通過而被阻留在格柵、細篩或濾料上。

格柵板。這一步屬廢水的預處理其目的在于回收有用物質;初步漫清廢水以利于以后的處理,減輕沉淀池或其他處理設備的負荷;保護抽水機械,以免受到顆粒物堵塞發生故障。

保護水泵和其他處理設備,格柵截留的效果主要取決于污水水質和格柵空隙的大小。清渣方法有人工與機械兩種。柵渣應及時清理和處理。

篩網主要用于截留粒度在數毫米到數十毫米的細碎懸浮態雜物,如纖維、紙漿、藻類等,通常用金屬絲、化纖編織而成,或用穿孔鋼板,孔徑一般小于5mm,最小可為0.2mm。

篩網過濾裝置有轉鼓式、旋轉式、轉盤式、固定式振動斜篩等。不論何種結構,既要能截留污物,又便于卸料及清理篩面 。

粒狀介質過濾(又稱彤、濾、 驚料過濾):廢水通過粒狀濾料(如石英砂)床層時,其中細小的懸浮物和肢體就被截留在濾料的表面和內部空隙中。

常用的過濾介質有石英砂、無煙煤和石榴石等。在過濾過程中濾料同時對懸浮物進行物理截留、沉降和吸附等作用。過濾的效果取決于濾料孔徑的大小、濾料層的厚度、 過濾速度及污水的性質等因素。

當廢水自上而下流過粒狀濾料層時,位徑較大的懸浮顆粒首先被截留在表層濾料的空隙中,從而使此層濾料空隙越來越小,逐漸形成一層主要由被截留的團體顆粒構成的濾膜, 并由它起主要的過濾作用。這種作用屬于阻力截留或篩濾作用。

廢水通過濾料層時,眾多的濾料表面提供了巨大的可供懸浮物沉降的有效面積,形成無數的小 “沉淀池”,懸浮物極易在此沉降下來。這種作用屬于重力 沉降。

由于濾料具有巨大的表面積,它與懸浮物之間有明顯的物理吸附作用。此外,砂粒在水中常常帶有表面負電荷,能吸附帶正電荷的鐵、鋁等肢體,從而在濾料表面形成帶正電荷的薄膜,并進而吸附帶負電荷的膠土和多種有機物等膠體,在砂粒上發生接觸絮凝。

(2)沉淀法

沉淀法是利用污水中的懸浮物和水的相對密度不同的原理, 借助重力沉降作用使懸浮物從水中分離出來。根據水中懸浮顆粒的濃度及絮凝特性(即彼此帖結聚團的能力)可分為四種:

分離沉降(或自由沉降):在沉淀過程中,顆粒之間互不聚合,單獨進行沉降。顆位只受到本身在水中的重力和水流阻力的作用,其形狀、 尺寸、 質量均不改變,下降速度也不改變。

混凝沉淀(或稱作絮凝沉降):混凝沉降是指在混凝劑的作用下,使廢水中的膠體和細微懸浮物凝聚為具有可分離性的絮凝體,然后采用重力沉降予以分離去除。混凝沉淀的特點是在沉淀過程中,顆粒接觸碰撞而互相聚集形成較大絮體,因此顆粒的尺寸和質量均會隨深度的增加而增大,其沉速也隨深度 而增加。

常用的無機混凝劑有硫酸鋁、硫酸亞鐵、三氯化鐵及聚合鋁;常用的有機絮凝劑有聚丙烯酷膠等,還可采用助凝劑如水玻璃、石灰等 。

區域沉降(又稱擁擠沉降、成層沉降):當廢水中懸浮物含量較高時,顆粒間的距離較小,其間的聚合力能使其集合成為一個整體,并一同下沉,而顆粒相互間的位置不發生變動,因此澄清水和混水間有一明顯的分界面,逐漸向下移動,此類沉降稱為區域沉降。加高濁度水的沉淀池和二次沉淀池中的沉降(在沉降中后期)多屬此類。

壓縮沉淀:當懸浮液中的懸浮固體濃度很高時,顆粒互相接觸、擠壓,在上層顆粒的重力作用下,下層顆粒間隙中的水被擠出,顆粒群體被壓縮。壓縮沉淀發生在沉淀池底部的污泥斗或污泥濃縮池中,進行得很緩慢。依據水中懸浮性物質的性質不同,設有沉砂池和沉淀池兩種設備。

沉砂池用于除去水中砂粒、煤渣等相對密度較大的元機顆粒物。沉砂池一般設在污水處理裝置前,以防止處理污水的其他機械設備受到磨損。

沉淀池是利用重力的作用使懸浮性雜質與水分離。它可以分離直徑為20~100μ,m以上的顆粒。根據沉淀池內的水流方向,可將其分為平流式、輻流式和豎流式三種。

平流式沉淀池:廢水從池一端流人,按水平方向在池內流動,水中懸浮物逐漸沉向池底,澄清水從另一端溢出。

輻流式沉淀池:池子多為圓形,直徑較大,一般在20~30m以上,適用于大型水處理廠。原水經進水管進入中心筒后,通過筒壁上的孔口和外圍的環形穿孔擋板,沿徑向呈輻射狀流向沉淀池周邊。由于過水斷面不斷增大,流速逐漸變小,顆粒沉降下來,澄清水從其周圍溢出匯入集水槽排出。

豎流式沉淀池:截面多為圓形,也有方形和多角形的。水由中心管的下口流入池中,通過反射板的阻攔向四周分布于整個水平斷面上,緩緩向上流動。沉速超過上升流速的顆粒則沉到污泥斗,澄清后的水由四周的埋口溢出池外。

在污水處理與利用的方法中,沉淀(或上浮)法常常作為其他處理方法前的預處理。如用生物處理法處理、污水時,一般需事先經過預沉池去除大部分懸浮物質,以減少生化處理時的負荷,而經生物處理后的出水仍要經過二次沉淀池的處理,進行泥水分離以保證出水水質。

(3)浮選法

將空氣通人污水中,并以微小氣泡形式從水中析出成為載體,污水中相對密度接近于水的微小顆粒狀的污染物質(如乳化油等)附在氣泡上,并隨氣泡上升到水面,然后用機械的方法撇除,從而使污水中的污染物質得以從污水中分離出來。

疏水性的物質易氣浮,而親水性的物質不易氣浮。因此有時為了提高氣浮效率,需向污水中加入浮選劑改變污染物的表面特性,使某些親水性物質轉變為疏水性物質,然后氣浮除去,這種方法稱為“浮選”。

氣浮時要求氣泡的分散度高,量多,有利于提高氣浮的效果。泡沫層的穩定性要適當,既便于浮渣穩定在水面上,又不影響浮渣的運送和脫水。產生氣泡的方法有兩種:

機械法:使空氣通過微孔管、微孔板、帶孔轉盤等生成微小氣泡。

壓力溶氣法:將空氣在一定的壓力下溶于水中, 并達到飽和狀態, 然后突然減壓, 過飽和的空氣便以微小氣泡的形式從水中逸出。目前廢水處理中的氣浮工藝多采用壓力溶氣法。

氣浮法的主要優點有:設備運行能力優于沉淀池,一般只需15~20min即可完成固液分離,因此它占地少,效率較高;氣浮法所產生的污泥較干燥,不易腐化,且系表面刮取,操作較便利;整個工作是向水中通人空氣,增加了水中的潛解氧量,對除去水中有機物、藻類表面活性劑及臭味等有明顯效果,其出水水質為后續處理及利用提供了有利條件。

氣浮法的主要缺點是:耗電量較大;設備維修及管理工作量增加,運轉部分常有堵塞的可能;浮渣露出水面,易受風、 雨等氣候因素影響。

除了上述兩種氣浮方法外,目前較為常用的方法還有電解氣浮法。

(4)離心分離法

含有懸浮污染物質的污水在高速旋轉時,利用懸浮顆粒(如乳化油)和污水受到的離心力不同, 從而達到分離目的的方法。常用的離心設備有旋流分離器和離心分離器等。

2.化學處理法

向污水中投加化學試劑,利用化學反應來分離、回收污水中的污染物質,或將污染物質轉化為無害的物質。該法既可使污染物與水分離,回收某些有用物質,也能改變污染物的性質,如降低廢水的酸堿度、去除金屬離子、氧化某些有毒有害的物質等,因此可達到比物理法更高的凈化程度。常用的化學方法 有化學沉淀法、中和法、氧化還原法和混凝法。

化學法處理的局限性如下:

由于化學處理廢水常采用化學藥劑(或材料), 處理費用一般較高, 操作與管理的要求也較嚴格。

化學法還需與物理法配合使用。在化學處理之前, 往往需用沉淀和過濾等手段作為前處理;在某些場合下,又需采用沉淀和過濾等物理手段作為化學處理的后處理。

(1)化學沉淀法

化學沉淀法是指向廢水中投加某些化學藥劑,使其與廢水中的溶解性污染物發生五換反應,形成難榕于水的鹽類(沉淀物)從水中沉淀出來,從而降低或除去水中的污染物。化學沉淀法多用于在水處理中去除鈣離子、鏡離子以及廢水中的重金屬離子,如隸、鍋、鉛、缽等。按使用的沉淀劑不同,沉淀法可分為石灰法(又稱為氫氧化物沉淀法)、硫化物法和銀鹽法等。

水中Ca2+、Mg2+令含量的總和稱總硬度,可分為碳酸鹽硬度和非碳酸鹽硬度。碳酸鹽硬度可投加石灰使水中的Ca 2+和Mg2+形成CaC03和Mg(OH)2沉淀而降低,如需同時去除非碳酸鹽硬度,可采用石灰-蘇打軟化法,使Ca2+和Mg2+ 形成CaC03 矛llMg( OH)2沉淀除去。因此,當原水硬度或堿度較高時,可先用化學沉淀法作為離子交換軟化的前處理,以節省離子交換的運行費用。

去除廢水中的重金屬離子時,一般采用投加碳酸鹽的方法,生成的金屬離子,碳酸鹽的溶度積很小,便于回收。如利用碳酸銷處理含鎊廢水。

ZnS04 + Na 2C03 一一→ZnC03 ↓+ NazS04

此法優點是經濟簡便,藥劑來源廣,因此在處理重金屬廢水時應用最廣。存在的問題是勞動衛生條件差,管道易結垢堵塞與腐蝕;沉淀體積大,脫水困難。

(2)中和法

中和法處理是利用酸堿相互作用生成鹽和水的化學原理, 將廢水從酸性或堿性調整到中性附近的處理方法。對于酸或堿的濃度大于3%的廢水,首先應進 行酸堿的回收。對于低濃度的酸堿廢水,可采取中和法進行處理。

酸性污水的處理,通常采用投加石灰、苛性鍋、碳酸鍋或以石灰石、大理石作潔、料來中和酸性污水。堿性污水的處理,通常采用投加硝酸、 鹽酸或利用二氧化碳氣體中和堿性污水。另外,對于酸、堿性污水也可以用二者相互中和的辦法來處理。

(3)氧化還原法

氧化還原法是通過化學藥劑與水中污染物之間的氧化還原反應,將污水中的有毒有害污染物轉化為無毒或微毒物質的方法。這種方法主要處理無機污染物,如重金屬和氧化物的污染。

利用高健酸御、液氯、臭氧等強氧化劑或電極的陽極反應,將廢水中的有害物質氧化分解為元害物質;利用鐵粉等還原劑或電極的陰極反應,將廢水中的有害物質還原為無害物質;臭氧氧化法對污水進 行脫色、殺菌和除臭處理;空氣氧化法處理含硫廢水;還原法處理含錦電鍍廢水等都是氧化還原法處理廢水的實例。

水處理常用的氧化劑有氧、臭氧、氯、次氯酸等。常用的還原劑有硫酸亞鐵、亞硫酸鹽、鐵屑、鑄粉等。

(4)混凝法

混凝法是在含不易沉降的細顆粒及膠體顆粒的廢水中加入電解質以破壞肢體的穩定性而使其聚沉。常用的混凝劑有硫酸鋁、硫酸亞鐵、三氯化鐵、聚乙烯亞股或聚丙烯酷膠等。為加速混凝常伴隨加入助凝劑石灰、活性硅膠、骨膠等。

3.物理化學處理法

物理化學法(簡稱物化法),是利用萃取、吸附、離子交換、 膜分離技術、氣提等物理化學的原理,處理或回收工業廢水的方法。它主要用分離廢水中無機的或有機的(難以生物降解的)溶解態或膠態的污染物質,回收有用組分,并使廢水得到深度凈化。

因此,適合于處理雜質濃度很高的廢水(用作回收利用的方法),或是濃度很低的廢水(用作廢水深度處理)。利用物理化學法處理工業廢水前,一般要經過預處理,以減少廢水中的懸浮物、油類、有害氣體等雜質, 或調整廢水的pH值, 以提高回收效率、 減少損耗。

同時,濃縮的殘渣要經過后處理以避免二次污染。常用的方法有萃取法、吸附法、離子交換法、膜析法(包括滲析法、電滲析法、反滲透法、超濾法等)。

(1)萃取法

萃取法是向污水中加人一種與水不相溶而密度小于水的有機溶劑,充分混合接觸后使污染物重新分配,由水相轉移到溶劑相中,利用溶劑與水的密度差別,將溶劑分離出來,從而使污水得到凈化的方法。再利用溶質與溶劑的沸點差將溶質蒸館回收,再生后的溶劑可循環使用。使用的溶劑叫萃取劑,提出的物質叫萃取物。萃取是一種液-液相間的傳質過程,是利用污染物(溶質)在水與有機溶劑兩相中的溶解度不同進行分離的。

在選擇萃取劑時,應注意萃取劑對被萃取物(污染物)的選擇性,即溶解能力的大小,通常溶解能力越大,萃取的效果越好;萃取劑與水的密度相差越大,萃取后與水分離就越容易。常用的萃取劑有含氧萃取劑、含磷萃取劑、含氮萃取劑等。常用的萃取設備有脈沖篩板塔、離心萃取機等。

(2)吸附法

吸附法處理廢水是利用——種多孔性固體材料(吸附劑)的表面來吸附水中的一種或多種溶解污染物、 有機污染物等(稱為熔質或吸附質), 以回收或去除它們, 使廢水得以凈化。例如, 利用活性炭可吸附廢白水中的盼、 隸、 錯、氧等劇毒物質, 且具有脫色、 除臭等作用。吸附法目前多用于污水的深度處理, 可分為靜態吸附和動態吸附兩種方法, 即在污水分別處于靜態和流動態時進行吸 附處理。常用的吸附設備有固定床、 移動床和流動床等。

在廢水處理中常用的吸附劑有活性炭、 磺化煤、 木炭、 焦炭、 硅藻土、 木屑和吸附樹脂等。以活性炭和吸附樹脂應用較為普遍。一般吸附劑均呈松散多 孔結構, 具有巨大的比表面積。其吸附力可分為分子引力(范德華力)、 化學鍵力和靜電引力三種。水處理中大多數吸附是上述三種吸附力共同作用的結果。

吸附劑吸附飽和后必須經過再生, 把吸附質從吸附劑的細孔中除去, 恢復其吸附能力。再生的方法有加熱再生法、 蒸汽吹脫法、 化學氧化再生法(濕式氧化、 電解氧化和臭氧氧化等)、 溶劑再生法和生物再生法等。

由于吸附劑價格較貴, 而且吸附法對進水的預處理要求高, 因此多用于給水處理中。

(3)離子交換法

離子交換法是利用離子交換劑的離子交換作用置換污水中的離子態污染物質的方法。隨著離子交換樹脂的生產和離子交換技術的發展, 由于效果良好, 操作方便, 近年來在回收和處理工業污水中的有毒物質方面, 得到一定的應用。如用陽離子交換劑去除(回收) 污水中的銅、鎳、鎘、鋅、汞、金、銀、鉑等重金屬。

離子交換法多用于工業給水處理中的軟化和除鹽, 主要去除廢水中的金屬 離子。離子交換軟化法采用Na+交換樹脂

(4)膜析法

電滲析法。電摻析法是在直流電場的作用下, 利用陰、 陽離子交換膜對溶液中陰陽離子的選擇透過性(即陽膜只允許陽離子通過, 陰膜只允許陰商子通過), 使一部分溶液中的離子遷移到另一部分溶液中去,使得溶液中的電解質與水分離, 從而達到濃縮、純化、分離的一 種水處理方法。電滲析法是在離子交換技術基礎上發展起來的新方法, 除用于污水處理外, 還可用于海水除鹽、制備去離子水(純水)等。

反滲透法,反滲透法巳用于含重金屬廢水的處理、 污水的深度處理及海水淡化等。在世界淡水供應危機嚴重的今天, 反滲透法結合蒸館法的海水淡化技術前景廣闊。它的另一重要用途是與離子交換系統聯用, 作為離子交換的預處理方法以制備去離子的超純水。在廢水處理中, 反滲透法主要用于去除與回收重金屬離子, 去除鹽、有機物、色度以及放射性元素等。

目前在水處理領域內廣泛應用的半透膜有醋酸纖維素 膜和聚酷膠膜磺化聚苯醋等高聚物。常用的反滲透裝置有管式、螺旋式、中空纖維式及板框式等。滲透水可重復利用。

4.生物處理法

生物處理法是利用自然環境中微生物的生物化學作用, 氧化分解溶解于污 水中或肢體狀態的有機污染物和某些無機毒物(如氟化物、硫化物), 并將其轉化為穩定無害的無機物, 從而使廢水得以凈化的方法。此法具有投資少、效果好、運行費用低等優點, 在城市廢水和工業廢水的處理中得到最廣泛的應用。

現代生物處理法根據微生物在生化反應中是否需要氧氣, 分為好氧生物處 理和厭氧生物處理兩類。

(1)好氧生物處理法

在有氧的條件下, 依賴好氧菌和兼氧菌的生化作用完成廢水處理的工藝稱為好氧生物處理法。該法需要有氧的供應。根據好氧微生物在處理系統中所呈現的狀態, 可分為活性污泥法和生物膜法。

活性污泥法是目前使用最廣泛的一種生物處理法。該方法是向曝氣池中富含有機污染物并有細菌的廢水中不斷地通人空氣(曝氣), 在一定的時間后就會出現懸浮態絮狀的泥粒, 這實際上是由好氧菌(及兼性好氧菌)所吸附的有機物和好氧菌代謝活動的產物所組成的聚集體, 具有很強的分解有機物的能力,稱之為 “活性污泥”。

從曝氣池流出的污水和活性污泥混合液經沉淀池沉淀分離后, 澄清的水被排放, 污泥作為種泥回流到曝氣池, 繼續運作。這種以活性污泥為主體的生物處理法稱為 活性污泥法” 。廢水在曝氣池中停留4~6h,可除去廢水中的有機物約90%。活性污泥法有多種池型及運行方式,通常有普通活性污泥法、完全混合式表面曝氣法、吸附再生法等。

生物膜法是使污水連續流經固體填料(碎石、煤渣或塑料填料),微生物在填料上大量繁殖,形成污泥狀的膠膜稱為生物膜, 利用生物膜處理污水的方法,稱為生物膜法。生物膜主要由大量的菌膠團、真菌、藻類和原生動物組成。

生物膜上的微生物起到和活性污泥同樣的凈化作用, 吸附并降解水中的有機污 染物, 從填料上脫落的衰老的生物膜隨處理后的污水流入沉淀池, 經過沉淀池沉淀分離后, 使污水得以凈化。常用的生物膜法有生物濾池、生物接觸氧化池、生物轉盤等。

(2)厭氧生物處理法

在無氧的條件下, 利用厭氧微生物的作用分解、污水中的有機物, 使污水凈化的方法稱為厭氧生物處理法。近年來, 世界性的能源緊張, 使污水處理向節能和實現能源化的方向發展, 從而促進了厭氧微生物處理方法的發展。

一大批高效新型厭氧生物反應器相繼出現, 包括厭氧生物濾池、 升流式厭氧污泥床、 厭氧硫化床等。它們的共同特點是反應器中生物團體濃度很高, 市泥齡很長, 因此處理能力大大提高, 從而使厭氧生物處理法所具有的能耗小、可以回收能源、 剩余的污泥量少、 生成的污泥穩定而易處理、 對高濃度有機廢水處理效率高等優點得到充分體現。厭氧生物處理法經過多年的發展,已經成為污水處理的主要方法之一。

5.除磷、脫氮

(1)除磷

城市廢水中磷的主要來源是糞便、洗滌劑和某些工業廢水,以正磷酸鹽、聚磷酸鹽和有機磷的形式溶解于水中。常用的除磷方法有化學法和生物法。

化學法除磷:利用磷酸鹽與鐵鹽、石灰、鋁鹽等反應生成磷酸鐵、磷酸鈣、磷酸鋁等沉淀,將磷從廢水中排除。化學法的特點是磷的去除效率較高,處理結果穩定, 污泥在處理和處置過程中不會重新釋放磷造成二次污染,但污泥的產量比較大。

生物法除磷:是利用微生物在好氧條件下, 對廢水中溶解性 磷酸鹽的過量吸收,沉淀分離而除磷。整個處理過程分為厭氧放磷和好氧吸磷 兩個階段。

含有過量磷的廢水和含磷活性污泥進人厭氧狀態后,活性污泥中的聚磷商在厭氧狀態下,將體內積聚的聚磷分解為無機磷釋放回廢水中。這就是“ 厭氧放磷”。

聚磷菌在分解聚磷時產生的能量除一部分供自己生存外,其余供聚磷菌吸收廢水中的有機物,并在厭氧發酵產酸菌的作用下轉化成乙酸背,再進一步轉化為PHB (聚自-短基丁酸)儲存于體內。

進入好氧狀態后, 聚磷菌將儲存于體內的PHB進行好氧分解, 并釋放出大 量能量,一部分供自己增殖,另一部分供其吸收廢水中的磷酸鹽,以聚磷的形式積聚于體內。這就是“好氧吸磷”。在此階段,活性污泥不斷增殖。除了一部分含磷活性活泥回流到厭氧池外,其余的作為剩余污泥排出系統,達到除磷的目的。

(2)脫氮

生活廢水中各種形式的氮占的比例比較恒定:有機氮 50%~60%,氨氮40%~ 50%,亞硝酸鹽與硝酸鹽中的氮占 0~ 5%。它們均來源于人們食物中的蛋白質。脫氮的方法有化學法和生物法兩大類。

化學法脫氮:包括氨吸收法和加氯法。

①氨吸收法:先把廢水的pH值調整到10以上,然后在解吸塔內解吸氨

②加氯法:在含氨氮的廢水中加氯。通過適當控制加氯量, 可以完全除去水中的氨氮。為了減少氯的投加量, 此法常與生物硝化聯用, 先硝化再除去微量的殘余氨氮。

生物法脫氮:生物脫氮是在微生物作用下,將有機氮和氨態氮轉化為氮氣的過程,其中包括硝化和反硝化兩個反應過程。

硝化反應是在好氧條件下,廢水中的氨態氮被硝化細菌 (亞硝酸菌和硝酸菌)轉化為亞硝酸鹽和硝酸鹽。反硝化反應是在無氧條件下, 反硝化菌將硝酸鹽氮(N03-)和亞硝酸鹽氮(NH2-)還原為氮氣。因此整個脫氮過程需經歷好氧和缺氧兩個階段。



據不完全統計,全國范圍內已建成運營的污水處理廠數量約4000座,其中有統計數據的污水處理工藝大約30種左右,本文重點總結了,國內6大主流的污水處理工藝!


國內六大主流污水處理工藝及占比

氧化溝

20.00%

A2/O工藝

16.30%

傳統活性污泥法

11.90%

SBR

8.20%

A/O工藝

3.80%

生物膜法

2.00%



 1、氧化溝工藝(覆蓋全國)




1、簡介


氧化溝工藝作為一種成熟的活性污泥污水處理工藝已在全國范圍內得到廣泛應用,它是活性污泥法的一種變型,其曝氣池呈封閉的溝渠型,所以它在水力流態上不同于傳統的活性污泥法,而是一種首尾相連的循環流曝氣溝渠,污水滲入其中得到凈化。


2、工藝特點


1)簡化了預處理


氧化溝水力停留時間和污泥齡比一般生物處理法長,懸浮有機物可與溶解性有機物同時得到較徹底的去除,排出的剩余污泥已得到高度穩定,因此氧化溝可不設初沉池,污泥不需要進行厭氧消化。


2)占地面積少


因為在流程中省略了初沉池、污泥消化池,有時還省略了二沉池和污泥回流裝置,使污水廠總占地面積不僅沒有增大,相反還可縮小。


3)具有推流式流態的特征


氧化溝具有推流特性,使得溶解氧濃度在沿池長方向形成濃度梯度,形成好氧、缺氧和厭氧條件。通過對系統合理的設計與控制,可以取得較好的脫氮除磷效果。


4)簡化工藝


將氧化溝和二沉池合建為一體式氧化溝,以及近年來發展的交替工作的氧化溝,可不用二沉池,從而使處理流程更為簡化。



2、A/O工藝(廣泛應用中小型城市)




1、簡介


A/O工藝產生于20世紀70年代,由于其同時具有降解有機物及脫氮作用,且運行管理方便,得到了廣泛的應用。由于污水處理工藝是根據污水的水量、水質、出水要求和當地的實際情況等多方面的因素確定的,所以中小型的城市生活污水處理站一般選用A/O等工藝。


2、工藝特點


1)優點:


效率高


該工藝對廢水中的有機物,氨氮等均有較高的去除效果。當總停留時間大于54h,經生物脫氮后的出水再經過混凝沉淀,可將COD值降至100mg/L以下,其他指標也達到排放標準,總氮去除率在70%以上。


流程簡單,投資省,操作費用低


該工藝是以廢水中的有機物作為反硝化的碳源,故不需要再另加甲醇等昂貴的碳源。


2)缺點:


由于沒有獨立的污泥回流系統,從而不能培養出具有獨特功能的污泥,難降解物質的降解率較低。


若要提高脫氮效率,必須加大內循環比,因而加大了運行費用。另外,內循環液來自曝氣池,含有一定的DO,使A段難以保持理想的缺氧狀態,影響反硝化效果,脫氮率很難達到90%。



3、A2/O工藝(重在脫磷除氮)




1、簡介


A2/O工藝是Anaerobic-Anoxic-Oxic的英文縮寫,是厭氧-缺氧-好氧生物脫氮除磷工藝的簡稱。這種工藝處理效率一般能達到:BOD5和SS為90%~95%,總氮為70%以上,磷為90%左右,一般適用于要求脫氮除磷的大中型城市污水廠。


但A2/O工藝的基建費和運行費均高于普通活性污泥法,運行管理要求高,所以對目前我國國情來說,當處理后的污水排入封閉性水體或緩流水體引起富營養化,從而影響給水水源時,才采用該工藝。


2、工藝特點


1)優點:


污染物去除效率高,運行穩定,有較好的耐沖擊負荷。


污泥沉降性能好。


厭氧、缺氧、好氧三種不同的環境條件和不同種類微生物菌群的有機配合,能同時具有去除有機物、脫氮除磷的功能。


脫氮效果受混合液回流比大小的影響,除磷效果則受回流污泥中夾帶DO和硝酸態氧的影響,因而脫氮除磷效率不可能很高。


在同時脫氧除磷去除有機物的工藝中,該工藝流程最為簡單,總的水力停留時間也少于同類其他工藝。


在厭氧-缺氧-好氧交替運行下,絲狀菌不會大量繁殖,SVI一般小于100,不會發生污泥膨脹。


污泥中磷含量高,一般為2.5%以上。


2)缺點:


反應池容積比A/O脫氮工藝還要大。


污泥內回流量大,能耗較高。


用于中小型污水廠費用偏高。


沼氣回收利用經濟效益差。


污泥滲出液需化學除磷。



4、傳統活性污泥法(用在大型污水處理廠)




1、簡介


活性污泥法工藝是一種應用最廣泛的廢水好氧生化處理技術,其主要由曝氣池、二次沉淀池、曝氣系統以及污泥回流系統等組成。


2、工藝特點


1)優點:


工藝相對成熟、積累運行經驗多、運行穩定;有機物去除效率高,BOD5的去除率通常為90%~95%;曝氣池耐沖擊負荷能力較低;適用于處理進水水質比較穩定而處理程度要求高的大型城市污水處理廠。


2)缺點:


需氧與供氧矛盾大,池首端供氧不足,池末端供氧大于需氧,造成浪費;傳統活性污泥法曝氣池停留時間較長,曝氣池容積大、占地面積大、基建費用高,電耗大;脫氧除磷效率低,通常只有10%~30%。



5、SBR工藝(適用于間歇排放)




1、簡介


處理過程主要由初期的去除與吸附作用、微生物的代謝作用、絮凝體的形成與絮凝沉淀性能幾個凈化過程完成。


SBR技術的核心是SBR反應池,該池集均化、初沉、生物降解、二沉等功能于一池,無污泥回流系統。尤其適用于間歇排放和流量變化較大的場合。


2、工藝特點


1)優點:


理想的推流過程使生化反應推動力增大,效率提高,池內厭氧、好氧處于交替狀態,凈化效果好。


運行效果穩定,污水在理想的靜止狀態下沉淀,需要時間短、效率高,出水水質好。


耐沖擊負荷,池內有滯留的處理水,對污水有稀釋、緩沖作用,有效抵抗水量和有機污物的沖擊。


工藝過程中的各工序可根據水質、水量進行調整,運行靈活。


處理設備少,構造簡單,便于操作和維護管理。


反應池內存在DO、BOD5濃度梯度,有效控制活性污泥膨脹。


工藝流程簡單、造價低。主體設備只有一個序批式間歇反應器,無二沉池、污泥回流系統,調節池、初沉池也可省略,布置緊湊、占地面積省。


2)缺點:


間歇周期運行,對自控要求高。


變水位運行,電耗增大。


脫氮除磷效率不太高。


污泥穩定性不如厭氧硝化好。



6、生物膜法(適用于低濃度廢水)



1、簡介


生物膜法是土壤自凈過程的人工強化,主要去除廢水中溶解性的和膠體狀的有機污染物,同時對廢水中的氨氮還具有一定的硝化能力。生物膜法在處理工業廢水中有著廣泛應用。


2、工藝特點


1)優點:


微生物多樣化,生物的食物鏈長,有利于提高污水處理效果和單位面積的處理負荷。


優勢菌群分段運行,有利于提高微生物對有機污染物的降解效率和增加難降解污染物的去除率,提高脫氮除磷效果。


對水質、水量變動有較強的適應性,耐沖擊負荷力增強。


污泥沉降性能好,易于固液分離,剩余污泥產量少,降低了污泥處理費用,進而降低投資費用。


適合低濃度污水的處理。


易于維護,運行管理方便,耗能低。


2)缺點:


與活性污泥法相比,生物膜法對環境溫度的要求較高,氣溫過高或過低都會影響生物膜的活性,引起生物膜的壞死和脫落。


另外,載體的比表面積對生物膜處理的效果有著很大的影響,如果選用的濾料比表面積達不到要求,想要達到預期的處理效果就需要增加處理池的面積,使投資費用增大。







   MBR(膜生物反應器)是把生物處理與膜分離相結合的一種組合工藝,在生物反應器中置入中空纖維膜組件,過濾中空纖維膜為超濾膜(UF),孔徑范圍為0.04μm,主要用于對懸浮液和有機物進行截留。其特點可使生物反應池內維持一定濃度的微生物量,對污水進行凈化。

MBR膜生物反應器,是一種將高效膜分離技術與傳統活性污泥法相結合的新型高效污水處理工藝,它用具有獨特結構的MBR平片膜組件置于曝氣池中,經過好氧曝氣和生物處理后的水,由泵通過濾膜過濾后抽出。MBR污水處理與傳統污水處理方法具有很大區別,通過膜分離裝置代替傳統工藝中的二沉池和三級處理工藝。從而得到優質的出水,解決了傳統環保設備進行污水處理的出水水質達不到中水回用要求的問題。MBR污水處理后的水可直接作為市政用水或進一步處理作各種工業用水。

由于MBR膜的存在大大提高了系統固液分離的能力,從而使MBR膜生物反應器的出水,水質和容積負荷都得到大幅度提高,經膜處理后的水水質標準高(超過國家一級A標準),經過消毒,最后形成水質和生物安全性高的優質再生水,可直接作為新生水源。由于膜的過濾作用,微生物被完全截留在MBR膜生物反應器中,實現了水力停留時間與活性污泥泥齡的徹底分離,消除了傳統活性污泥法中污泥膨脹問題。MBR膜生物反應器具有對污染物去除效率高、硝化能力強,可同時進行硝化、反硝化、脫氮效果好、出水水質穩定、剩余污泥產量低、設備緊湊、占地面積少(只有傳統工藝的1/3-1/2)、增量擴容方便、自動化程度高、操作簡單等優點。

MBR膜生物反應器組件系列,具有結構緊湊、外型美觀、占地面積小、運行費用低、穩定可靠、自動化程度高、維護操作方便等優點。MBR污水處理的出水水質好,優于中水水質標準。并以獨特的MBR平片膜技術,克服了一般中空纖維膜的諸多不足之處,是當今國際先進的污水處理產品設備。MBR膜生物反應器的系列膜組件已經形成了標準化的系列產品,每個組件由50-150片標準平板膜片組成,也可以根據用戶的需求進行單獨設計,以滿足用戶需求。

MBR一體化設備利用膜生物反應器(MBR)進行污水處理及回用的一體化設備,其具有膜生物反應器的所有優點:出水水質好,運行成本低、系統抗沖擊性強、污泥量少,自動化程度高等,另外,作為一體化設備,其具有占地面積小,便于集成。它既可以作為小型的污水回用設備,又可以作為較大型污水處理廠(站)的核心處理單元,是目前污水處理領域研究的熱點之一,具有廣闊的應用前景。

01

工作原理

膜生物反應器(MBR)工藝是膜分離技術與生物技術有機結合的新型廢水處理技術。它利用膜分離設備將生化反應池中的活性污泥和大分子有機物質截留住,省掉二沉池。活性污泥濃度因此大大提高,水力停留時間(HRT)和污泥停留時間(SRT)可以分別控制,而難降解的物質在反應器中不斷反應、降解。

因此,膜生物反應器(MBR)工藝通過膜分離技術大大強化了生物反應器的功能。與傳統的生物處理方法相比,是目前最有前途的廢水處理新技術之一。

其基本結構如下圖所示:

02

設備性能參數

MBR一體化設備的核心部件是膜生物反應器,其進水水質要求如下:

COD<500mg/L;

BOD5<300mg/L;

SS<100mg/L;

NH3-N<50mg/L;

大腸桿菌數<10000個/L;

一體化設備可根據原水水質靈活配置工藝流程,使該設備具有廣泛的適用性。能直接將生活污水、醫院污水處理達到生活雜用水標準。

03

出水水質

出水水質達到生活雜用水標準:

COD<50mg/L;

BOD5<10mg/L;

SS<10mg/L;

NH3-N<10mg/L;

大腸桿菌數<3個/L;

04

典型工藝流程

 MBR一體化設備處理生活污水處理,該技術是一種先進的污水處理技術,其核心是基于浸入式高強中空纖維膜分離和生物反應技術,將懸浮生長生物反應器與超濾膜分離系統一體化,用超濾膜分離方法替代了傳統活性污泥處理系統中的二沉池和砂濾系統。其特點是處理水水質非常好,懸浮固體、CODcr、NH3-N、BOD5和濁度很低,可直接回用作雜用水,比如飲用水以外的生活雜用水,園林綠化,洗車等;工業用水,比如循環冷卻用水或直接作為反滲透進水、生產鍋爐補給水和電子工業超純水。

超濾膜通常是直接浸沒在曝氣池中,直接與生物反應混合液接觸,通過過濾泵的負壓抽吸使濾后水通過外壓式中空纖維膜達到固液分離的作用。負壓抽吸的壓差非常低,******只有2.2米的水頭,單位處理水所需的能量較小。在過濾過程中,通過鼓風機在膜的底部通入空氣。一方面氣流上升產生的湍流對中空纖維膜的外表面產生擦洗作用,從而可連續清除掉膜表面上粘附的固體物質,防止或降低膜的污染或堵塞;另一方面這種氣流同時也具有曝氣作用,可提供生物降解所需要的大部分耗氧量。生物降解所需要的其余部分氧還要通過擴散曝氣系統來完成。生物反應中產生的過量污泥直接從超濾膜池中排出。

05

主要優點

MBR膜生物反應器在MBR污水處理和MBR中水回用工程的應用中具有以下十分突出的優點:

1) MBR膜生物反應器的污染物去除效率高,處理出水水質好;

2) MBR膜生物反應器的污泥濃度高,裝置容積負荷大,占地面積小;

3) MBR膜生物反應器有利于增殖緩慢或高效微生物的截留,提高系統的硝化效果和對難降解有機物的處理能力;

4) MBR膜生物反應器的剩余污泥產生量低;

5) MBR膜生物反應器易于實現自動控制,操作管理方便;

6) 經處理后排放水SS和濁度都接近于零,可實現回用。

06

MBR(膜生物反應器)工藝特征

1) 對污水中的有機物進行降解、硝化菌將NH3-N硝化為NO3-,對有機物去除率在95%以上;對氨氮去除率在97%以上。

2) 預處理過程簡單,不需要大量投加化學藥劑,操作過程簡單;

3) 回收率高,水的回收率可達到99%以上,這種靈活性容許操作員在流入的未凈化水品質惡化時通過降低回收率減少對隔膜的“壓力”,但同時產生相同總量和品質的凈化水;

4) 系統使用邏輯進程監控系統,包括流量傳送器和壓力傳送器等等。這種高度受控的系統方法可用于設計最靈活的系統并提高操作員接口的最低要求;

5) 空氣沖洗保證在各種流入條件下都能可靠運行;

6) 自動反沖保證在較低的過膜壓力下提高整體膜通量;

7) 占地面積小,只有傳統工藝的10~20%;

8) 使用壽命長,連續運行時間可達7萬小時,斷絲率小于1%。

微生物對于污水處理工藝調整的指示作用:

活性污泥中出現的微型動物的數量,往往和污水處理系統的運轉情況有著直接或間接的關系,進水水質的變化、充氧量的變化等都可以引起活性污泥組成的變化,微型動物體積比細菌要大很多,比較容易觀察和發現其微型動物的變化,因而可以作為污水處理的指示生物,在一些特殊情況發生時(如水質突變、污泥中毒等),即可根據生物相的變化,及時發現問題并采取必要的措施。

生物是由低等向高等演化的,低等生物對環境適應性強,對環境因素的改變不甚敏感。較高等生物則相反,例如鐘蟲對溶解氧和毒物特別敏感。所以,水體中的排污口、廢水生物處理的初期或推流系統的進水處,生長大量的細菌,其他微生物很少或不出現。著污(廢)水凈化和水體自凈程度增高,相應出現許多較高級的微生物。


原生動物及微型后生動物出現的先后次序是:細菌→植物性鞭毛蟲→肉足類(變形蟲)→動物性鞭毛蟲→游泳型纖毛蟲、吸管蟲→固著型纖毛蟲→輪蟲。

原生動物及微型后生動物的指示作用表現為以下三點。

可根據上述原生動物和微型后生動物的演替,根據它們的活動規律判斷水質和污(廢)水處理程度。還可判斷活性污泥培養成熟程度。


二、根據原生動物種類判斷活性污泥和處理水質的好壞。

如固著型纖毛蟲的鐘蟲屬、累枝蟲屬、蓋纖蟲屬、聚縮蟲屬、獨縮蟲屬、楯纖蟲屬、吸管蟲屬、漫游蟲屬、內管蟲屬、輪蟲等出現,說明活性污泥正常,出水水質好。當豆形蟲屬、草履蟲屬、四膜蟲屬、屋滴蟲屬、眼蟲屬等出現。說明活性污泥結構松散,出水水質差。線蟲出現則說明缺氧。


三、根據原生動物遇惡劣環境改變個體形態及變化過程判斷進水水質變化和運行中出現的問題。

在污水(廢)水生物處理正常運行時,常常由于進水流量,有機物濃度、溶解氧、溫度、pH、毒物等的突然變化影響了正常的處理效果,使出水水質達不到排放標準。通過水質測定可以知道水質的變化,但有機物濃度和有毒物質等的測定時間較長故經常測定不易做到。而微生物鏡檢很簡便,隨時可了解到原生動物種類變化和相對數量消長情況。根據原生動物消長的規律性初步判斷污(廢)水凈化程度,或根據原生動物的個體形態、生長狀況的變化預報進水水質和運行條件正常與否。

以鐘蟲為例:當環境條件惡劣時,鐘蟲則由正常蟲體向胞囊演變的一系列變態變化。鐘蟲的尾柄先脫落,隨后蟲體后端長出次生纖毛環呈游泳生活狀態(通常叫游泳鐘蟲),或蟲體變形,甚至呈長圓柱形,前端閉鎖,纖毛環縮到體內,依靠次生纖毛環向著相反方向游泳,如果廢水水質不加以改善,蟲體將會越變越長,最后變成胞囊,甚至死亡。如果廢水水質改善,蟲體可恢復原狀,恢復活性。

當曝氣不足時,鐘蟲不活躍,伸縮泡處于舒張狀態,不收縮,不活動;卵尾波蟲占優勢,有豆形蟲、屋滴蟲、變形蟲

著生的緣毛目多時,處理效果良好,出水BOD5和濁度低。(如小口鐘蟲、八鐘蟲、溝鐘蟲、褶鐘蟲、瓶累枝蟲、微盤蓋蟲、獨縮蟲)這些緣毛目的種類都固定在絮狀物上,并隨窗之而翻動,其中還夾雜一些爬行的 棲纖蟲、游仆蟲、尖毛蟲、卑氣管葉蟲等,這說明優質而成熟的活性污泥。 

  • 聯系我們

    您可以通過以下方式與我們取得聯系,感謝您對我們的關注,
    并期待廣大新老客戶洽談咨詢、蒞臨指導

    電話/傳真:0510-83798680
    E-mail: kelin@wxkelin.com
    聯系人:胡先生
    手機:13382225580 15951560110
    地址:江蘇省無錫市錫山區安鎮街道安國路338號

  • COPYRIGHT ? 2022 無錫科霖環保科技有限公司 版權所有 蘇ICP備2023016875號

我們會認真查閱您反饋的每一個問題,并盡快給您答復,在這里您可以提出遇到的問題,也可以發表自己的建議和想法。

問題與建議描述:
為了讓您盡快得到反饋,請留下您的聯系方式:
驗證碼: